Built-in Types
ProjectMetadata
Project metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
name | str | The name of the project, for example: "My Cool Project" |
TagMetadata
Tag metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
name | str | The name of the tag |
color | str | The color code of the tag, for example: "#73aaff" |
description | str | The description of the tag. |
Pagination
Pagination parameters.
Bases
dataclass
Field | Type | Description |
---|---|---|
page | str | A string that represents the page of results |
limit | int | A limit on the number of objects to be returned, the Limit can range between 1 and 100, and the default is 100 |
AssetFilter
Asset list filter.
Bases
dataclass
Field | Type | Description |
---|---|---|
groups | List[str] | The filter groups. |
filename | str | The query filename. |
status | str | The status of the asset, enum: [Annotated , Review , Completed , Tofix , None ] |
metadata_query | str | The metadata query string. Please refer Here. |
AssetMetadata
Asset Metadata.
The custom metadata size that can be attached depends on your price plan. Please reference here for more information!
Bases
dataclass
Field | Type | Description |
---|---|---|
status | str | The status of the asset, enum: [Annotated , Review , Completed , Tofix , None ] |
custom_metadata | dict | This metadata dictionary should contain the metadata information you want to preserve or add for use on the Nexus platform. |
AnnotationFilter
Annotation list filter.
Bases
dataclass
Field | Type | Description |
---|---|---|
asset_ids | List[str] | The list of asset ids. |
AnnotationMetadata
Annotation metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
asset_id | str | The id of the asset, example: "asset_9f61bab8-ec60-476f-a1cf-63eca5c313dd" |
tag | str | The name of the tag |
bound_type | str | The bound type of the annotation, Enum: [Polygon , Rectangle ,Classification ,Keypoints ] |
bound | list | The bound of the annotation, example: [[0.0325, 0.8436],[0.0325, 0.9094],[0.1275, 0.9094],[0.1275, 0.8431]] |
AnnotationExportOptions
Annotation export options.
Bases
dataclass
Field | Type | Description |
---|---|---|
split_ratio | int | The ratio used to split the data into training and validation sets |
seed | int | The number used to initialize a pseudorandom number generator |
normalized | bool | The boolean indication on whether the exported annotations should be shuffled |
AnnotationExportMetadata
Annotation Export Metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
format | AnnotationExportFormat | The format to export the annotations. |
options | AnnotationExportOptions | The options to export the annotations |
AssetMetadata
Asset Metadata.
The custom metadata size that can be attached depends on your price plan. Please reference here for more information!
Bases
dataclass
Field | Type | Description |
---|---|---|
status | str | The status of the asset, enum: [Annotated , Review , Completed , Tofix , None ] |
custom_metadata | dict | This metadata dictionary should contain the metadata information you want to preserve or add for use on the Nexus platform. |
AnnotationExportFormat
Annotation export formats.
Bases
Enum
Type | Description |
---|---|
str | The format of the annotation. Classification: [ csv_classification , classification_tfrecord ]Bounding Box: [ csv_fourcorner , csv_widthheight , coco , pascal_voc , yolo_keras_pytorch , yolo_darknet , createml , tfrecord ]Segmentation: [ polygon_single , polygon_coco ]Keypoint: [ keypoints_coco ] |
FlowMetadata
Workflow Metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
title | str | The title of the Workflow, for example: "New workflow title" |
RunSetupMetadata
Training settings.
Bases
dataclass
Field | Type | Description |
---|---|---|
accelerator | Accelerator | The hardware accelerator to use for the training run |
checkpoint | Checkpoint | The checkpoint strategy name for the training run. |
limit | Limit | The limit configuration for the training |
preview | bool | A boolean value indicating whether to enable preview for the training |
matrix | bool | A boolean value indicating whether to enable the matrix for the training |
Accelerator
Run Accelerator Metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
name | str | The GPU type to use for the training run, enum: [GPU_T4 , GPU_L4 ,GPU_P100 ,GPU_V100 ,GPU_A100_40GB ] |
count | int | The number of GPUs to use for the training run |
Checkpoint
Run Checkpoint Metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
strategy | str | The checkpointing strategy name for the training, enum: [ STRAT_EVERY_N_EPOCH , STRAT_ALWAYS_SAVE_LATEST , STRAT_LOWEST_VALIDATION_LOSS , STRAT_HIGHEST_ACCURACY ] |
metric | str | The checkpointing metric for the training, enum: [Loss/total_loss , Loss/regularization_loss , Loss/localization_loss , Loss/classification_loss , DetectionBoxes_Precision/mAP , DetectionBoxes_Precision/[email protected] , DetectionBoxes_Precision/mAP (small) , DetectionBoxes_Precision/mAP (medium) , DetectionBoxes_Precision/mAP (large) , DetectionBoxes_Recall/AR@1 , DetectionBoxes_Recall/AR@10 , DetectionBoxes_Recall/AR@100 , DetectionBoxes_Recall/AR@100 (small) , DetectionBoxes_Recall/AR@100 (medium) , DetectionBoxes_Recall/AR@100 (large) ] |
evaluation_interval | int | The checkpoint evaluation interval value for the training |
Limit
Run Limit Metadata.
Bases
dataclass
Field | Type | Description |
---|---|---|
metric | str | The limit metric for the training, enum: [LIM_MINUTE , LIM_EPOCH , LIM_NONE ] |
value | int | The limit metric value for the training |
ArtifactFilters
Artifact filters data class.
Bases
dataclass
Field | Type | Description |
---|---|---|
run_ids | List[str] | The list of run ids. |
ArtifactExportMetadata
Artifact exporting settings.
Bases
dataclass
Field | Type | Description |
---|---|---|
format | str | The format of the artifact exports, enum: [ONNX , TensorFlow , PyTorch , TFLite ] |
quantization | str | The quantization of the artifact exports, optional. |
DeploymentMetadata
Deployment settings.
Bases
dataclass
Field | Type | Description |
---|---|---|
name | str | The name of the inference API instance |
artifact_id | int | The unique identifier of the artifact to deploy |
num_of_instances | int | The number of the inference API instances to deploy |
version_tag | str | The current version tag of the inference instance. |
resources | DeploymentResources | The resource allocation for the deployment instance, optional. |
options | DeploymentOptions | The configuration options for the deployment instance, optional. |
DeploymentResources
The resource allocation for the deployment instance, optional.
Bases
dataclass
Field | Type | Description |
---|---|---|
GPU_T4 | int | The number of NVIDIA Tesla T4 GPUs to allocate to each Inference API instance, optional. |
DeploymentOptions
The configuration options for creating each deployment API instance, optional.
Bases
dataclass
Field | Type | Description |
---|---|---|
evaluation_strategy | str | The evaluation strategy to use of each Inference API, default entropy_score . |
evaluation_threshold | int | The evaluation threshold to use to trigger post-evaluation actions, default 0.5 . |
evaluation_group | str | The asset group to which assets triggered by the active learning route will be uploaded, is a comma-separated list. |
Updated 11 months ago