Result Types
Workspace
Workspace details for a specific workspace given by a provided secret key.
Click to expand
Applicable Functions
Attributes
Workspace(
id="ws_1c8aab980f174b0296c7e35e88665b13",
name="Raighne's Workspace",
owner="user_6323fea23e292439f31c58cd",
tier="Developer",
create_date=1701927649302
)
Name | Type | Description |
---|---|---|
id | str | Unique ID of the current workspace. |
name | str | Name of the current workspace. You can modify this on Nexus directly by clicking on the Settings button on the top right of the Workspace Dashboard. |
owner | str | Unique user ID of the workspace owner. This is tied to the email used to sign up for the Nexus account. |
tier | str | Current workspace tier that determines access to advanced features and increased resource quotas. To enjoy these benefits, check out how to Upgrade Your Plan. |
create_date | int | UNIX timestamp of workspace creation date. |
Project
Project results for a specific project given by the project key.
Click to expand
Applicable Functions
Attributes
Project(
id='proj_9004a21df7b040ace4674c4879603fe8',
name='keypoints',
workspace_id='ws_1c8aab980f174b0296c7e35e88665b13',
type='ObjectDetection',
create_date=1701927649302,
localization='MULTI',
tags=['cat faces'],
groups=['main', 'cats'],
statistic=Statistic(
tags_count=[TagsCountItem(name='cat faces', count=0)],
total_assets=28,
annotated_assets=0,
total_annotations=0
)
)
Attribute | Type | Description |
---|---|---|
|
| Project ID. |
|
| Project name. |
|
| Workspace ID of the project. |
|
| Project task type, one of tails for a specific workspace given by a provided [s |
|
| UNIX timestamp of project creation date. |
|
| Region(s) for data localization. |
|
| List of tag names. |
|
| List of assets groups. |
|
| Contains project statistics for the following categories:
|
Statistic
Project-level statistics on tags, assets, and annotations.
Click to expand
Applicable Functions
Attributes
Statistic(
tags_count=[TagsCountItem(name="cat faces", count=0)],
total_assets=28,
annotated_assets=0,
total_annotations=0
)
Name | Type | Description |
---|---|---|
tags_count | list[ TagCountItem ] | List of TagCountItem objects representing tag counts for each tag in the project. |
total_assets | int | Total number of assets in the project. |
annotated_assets | int | Total number of annotated assets in the project. |
total_annotations | int | Total number of annotations in the project. |
User
User metadata.
Applicable Functions
ProjectUser(
id='user_6323fea23e292439f31c58cd',
access_type='Owner',
email='[email protected]',
nickname='raighne',
picture='https://s.gravatar.com/avatar/avatars%2Fra.png'
)
Attribute | Type | Description |
---|---|---|
|
| User ID. |
|
| The access type of the current project, one of workspace given by a provided [secret . |
|
| User email. |
|
| User nickname. |
|
| User profile picture. |
AssetResults
Data results for a specific asset.
Applicable Functions
Asset(
id='asset_8208740a-2d9c-46e8-abb9-5777371bdcd3',
filename='boat180.png',
project='proj_cd067221d5a6e4007ccbb4afb5966535',
status='None',
create_date=1701927649302,
url='',
metadata=AssetMetadata(
file_size=186497,
mime_type='image/png',
height=243,
width=400,
groups=['main'],
custom_metadata={'captureAt': '2021-03-10T09:00:00Z'}
),
statistic=AssetAnnotationsStatistic(
tags_count=[],
total_annotations=0
)
)
Attribute | Type | Description |
---|---|---|
|
| Asset ID. |
|
| File name of the asset. |
|
| Project ID in which the asset is contained. |
|
| The status of the asset, enum: notated |
|
| UNIX timestamp of when the asset was uploaded. |
|
| URL to the raw asset file. |
|
| . |
|
| . |
AssetMetadata
Metadata for a specific asset.
Applicable Functions
AssetMetadata(
file_size=186497,
mime_type='image/png',
height=243,
width=400,
groups=['main'],
custom_metadata={'captureAt': '2021-03-10T09:00:00Z'}
)
Attribute | Type | Description |
---|---|---|
file_size | int | Size of the asset in bytes. |
mime_type | str | Media type and format of the asset. |
height | int | Pixel height of the asset. |
width | int | Pixel width of the asset. |
groups | List[str] | The groups of the asset. |
custom_metadata | dict | The custom metadata of the asset. |
AssetStatistics
Data statistics for a specific asset.
Applicable Functions
AssetAnnotationsStatistic(
tags_count= [
TagsCountItem(name="tagName1", count=1)
],
total_annotations= 2
)
Attribute | Type | Description |
---|---|---|
tags_count | list[dict] | List of tag counts. |
total_annotations | int | Total number of annotations in the asset. |
GroupStatistics
Asset group statistics.
Applicable Functions
[
AssetGroup(
group='1',
statistic=AssetGroupStatistic(
total_assets=1,
annotated_assets=0,
reviewed_assets=0,
to_fixed_assets=0,
completed_assets=0
)
)
]
Attribute | Type | Description |
---|---|---|
|
| Name of the asset group. |
|
| Contains asset counts of the following categories:
|
TagCountItem
Total count of instances of a tag.
Applicable Functions
project.get_info()
Attributes
TagCountItem(
name="tagName1",
count=1
)
Name | Type | Description |
---|---|---|
name | str | Tag name. |
count | int | Total count of instances of the tag. |
AnnotationMetadata
Metadata for a specific annotation.
Applicable Functions
Annotation(
id='annot_a9ff9b21-c0e2-49ff-8a69-773aaf00a6f8',
project_id='proj_cd067221d5a6e4007ccbb4afb5966535',
asset_id='asset_f4dcb429-0332-4dd6-a1b4-fee794031ba6',
tag='boat',
bound_type='Rectangle',
create_date=1701927649302,
bound=[
[0.2772511848341232, 0.34635416666666663],
[0.2772511848341232, 0.46875],
[0.54739336492891, 0.46875],
[0.54739336492891, 0.34635416666666663]
]
)
Attribute | Type | Description |
---|---|---|
|
| Unique ID of the annotation. |
|
| ID of the project containing the annotation. |
|
| ID of the asset containing the annotation. |
|
| Tag name of the annotation. |
|
| Bound type of the annotation, one of specific workspace give. |
|
| Bound vertices with the following format: |
WorkflowMetadata
Metadata for a training workflow.
Applicable Functions
Workflow(
id='flow_64e812a7e47592ef374cbbc2',
project_id='proj_cd067221d5a6e4007ccbb4afb5966535',
title='Yolov8 Workflow',
create_date=1701927649302,
update_date=1701927649302
)
Attribute | Type | Description |
---|---|---|
id | str | ID of the workflow. |
title | str | Name of the workflow. |
project_id | str | Project ID containing the workflow. |
update_date | int | Last updated UNIX timestamp of the workflow. |
TrainingInsight
Insight metadata for a training run.
Applicable Functions
ProjectInsight(
flow_title='Test workflow',
run_id='run_4a5d406d-464d-470c-bd7d-e92456621ad3',
dataset=InsightDataset(
data_type='Rectangle',
num_classes=1,
average_annotations=5.19,
total_assets=500,
settings=DatasetSettings(
split_ratio=0.3,
shuffle=True,
seed=0,
using_sliding_window=False
)
),
model=InsightModel(
name='fasterrcnn-inceptionv2-1024x1024',
batch_size=2,
training_steps=5000,
max_detection_per_class=100,
solver='momentum',
learning_rate=0.04,
momentum=0.9
),
checkpoint=RunCheckpoint(
strategy='STRAT_ALWAYS_SAVE_LATEST',
evaluation_interval=250,
metric=None
),
artifact=InsightArtifact(
id='artifact_65ae274540259e2a07533532',
is_training=False,
step=5000,
metric=ArtifactMetric(
total_loss=0.32356,
classification_loss=0.012036,
localization_loss=0.010706,
regularization_loss=0.0
)
),
create_date=1705912133684
)
Attribute | Type | Description |
---|---|---|
|
| Name of the workflow. |
|
| ID of the training run. |
|
| Contains loss metrics for the following categories: |
|
| Total number of training steps. |
|
| UNIX timestamp of the training creation date. |
|
| Contains loss metrics for the following categories:
|
|
| Contains dataset statistics for the following categories:
|
|
| Name of the optimizer used in the training. |
|
| Value of the learning rate used in the training. |
|
| Value of the momentum used in the training. |
|
| Total number of training epochs. |
|
| Value of the batch size used in the training. |
|
| Name of the specific model architecture used in the training. |
|
| Value to cap the maximum number of detections per class for the model. |
|
| Annotation data type. |
|
| Total number of unique classes. |
|
| Train-test split ratio. |
|
| Whether the dataset was shuffled. |
|
| Initialization seed for the training. |
|
| Epoch interval to generate checkpoints. |
|
| Metric used to determine best checkpoint saved. |
TrainingMetadata
Metadata for training runs.
Bases
dict
Applicable Functions
{
"id": "run_63eb212ff0f856bf95085095",
"object": "run",
"project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
"flow_id": "flow_63bbd3bf8a78eb906f417396",
"status": {
"conditions": [
{
"condition": "TrainingStarted",
"last_updated": 1676353954729,
"status": "finished"
},
{
"condition": "TrainingFinished",
"last_updated": 1676356061724,
"status": "finished"
}
],
"last_updated": 1676356061724
},
"execution": {
"accelerator": {
"name": "GPU_T4",
"count": 2
},
"checkpoint": {
"strategy": "STRAT_LOWEST_VALIDATION_LOSS",
"evaluation_interval": 250,
"metric": "Loss/total_loss"
}
},
"features": {
"matrix": true,
"preview": true
},
"create_date": 1676353954729,
"last_modified_date": 1676356061724,
"logs": [
"log_63eb212ff0f856bf95085095"
]
}
Attribute | Type | Description |
---|---|---|
|
| Training run ID. |
|
| Type of object. |
|
| ID of the project containing the training run. |
|
| ID of the workflow used for the training run. |
|
| Status of completion of the different stages in the training run, contains the following categories:
|
|
| Contains training configuration parameters for the following categories:
|
|
| Contains the activation status of certain advanced visualization features such as Evaluation Preview and Confusion Matrix. |
|
| UNIX timestamp of the training creation date. |
|
| UNIX timestamp of the last modified date of the training. |
|
| List of training log IDs that can be used to view training logs via |
LogMetadata
Metadata for training logs.
Bases
dict
Applicable Functions
{
"id": "log_63eb212ff0f856bf95085095",
"object": "log",
"event": [
{
"ev": "memoryUsage",
"pl": {},
"t": 1675669392000
}
]
}
Attribute | Type | Description |
---|---|---|
|
| Log ID. |
|
| Type of object. |
|
| List of training event logs containing the following categories:
|
ArtifactMetadata
Metadata for artifacts.
Bases
dict
Applicable Functions
{
"id": "artifact_63bd140e67b42dc9f431ffe2",
"object": "artifact",
"is_training": false,
"step": 3000,
"flow_title": "Blood Cell Detector",
"run_id": "run_63bd08d8cdf700575fa4dd01",
"files": [
{
"name": "ckpt-13.data-00000-of-00001",
"md5": "5a96886e53f98daae379787ee0f22bda"
}
],
"project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
"artifact_name": "ckpt-13",
"create_date": 1673335822851,
"metric": {
"total_loss": 0.548,
"classification_loss": 0.511,
"localization_loss": 0.006,
"regularization_loss": 0.03
},
"is_deployed": false,
"exports": ["onnx", "tflite"],
"model_type": "efficientdet-d1-640x640",
"exportable_formats": ["tensorflow", "tflite", "onnx", "pytorch"]
}
Attribute | Type | Description |
---|---|---|
|
| Artifact ID. |
|
| Type of object. |
|
| Whether the training is still running. |
|
| Total number of training steps. |
|
| Title of the workflow. |
|
| ID of the training run of the current artifact. |
|
| List of artifact checkpoint files containing the following categories:
|
|
| ID of the project containing the current artifact. |
|
| Checkpoint name of the artifact. |
|
| UNIX timestamp of the artifact creation date. |
|
| Dictionary containing the following metrics:
|
|
| Whether the current artifact has an active deployment. |
|
| List of model formats that the artifact has been exported in. |
|
| Model architecture name. |
|
| List of all exportable model formats for the artifact. |
ExportedMetadata
Metadata of exported models.
Bases
dict
Applicable Functions
{
"id": "model_d15aba68872b045e27ac3db06a401da3",
"object": "model",
"status": "Finished",
"format": "tensorflow",
"create_date": 1673336054173,
"download": {
"method": "GET",
"expiry": 1673339505871,
"url": "https://storage.googleapis.com/exports.datature.ioa2d89"
}
}
Attribute | Type | Description |
---|---|---|
|
| ID of the exported model. |
|
| Type of object. |
|
| Status of the model export. |
|
| Exported model format. |
|
| UNIX timestamp of the creation date of the exported model. |
|
| Dictionary containing the download metadata of the exported model:
|
DeploymentMetadata
Metadata for active deployments.
Bases
dict
Applicable Functions
{
"id": "deploy_30922d5e-b2f6-43dc-b7b4-e29e2c30fb45",
"object": "deploy",
"project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
"model_id": "model_5cbcf0fb9f692621f9cfc1ea8f1d68c7",
"scaling": {
"mode": "fixed",
"num_instances": 1
},
"status": {
"overview": "AVAILABLE",
"message": "Created service successfully",
"status_date": 1673936127872
},
"create_date": 1673935589700,
"last_modified_date": 1673936127872,
"locked": false,
"url": "https://inference.datature.io/neural/3092245/predict"
}
Attribute | Type | Description |
---|---|---|
|
| ID of the active deployment. |
|
| Type of object. |
|
| Project ID containing the active deployment. |
|
| ID of the model used for the deployment. |
|
| Dictionary containing the following categories:
|
|
| Dictionary of the deployment status containing the following categories:
|
|
| UNIX timestamp of the creation date of the deployment. |
|
| UNIX timestamp of the last modified date of the deployment. |
|
| Whether the deployment is locked. |
|
| API URL endpoint for prediction requests. |
OperationMetadata
Metadata for background operations.
Bases
dict
Applicable Functions
{
"id": "op_508fc5d1-e908-486d-9e7b-1dca99b80024",
"object": "operation",
"op_link": "users/api|affaf/proje-1dca99b80024",
"status": {
"overview": "Queued",
"message": "Operation queued",
"time_updated": 1676621361765,
"time_scheduled": 1676621361765,
"progress": {
"unit": "whole operation",
"with_status": {
"queued": 1,
"running": 0,
"finished": 0,
"cancelled": 0,
"errored": 0
}
}
}
}
Attribute | Type | Description |
---|---|---|
id | str | Unique operation ID. |
object | str | Type of object. |
op_link | str | Operation link used to retrieve operation status. |
status | dict | Operation status metadata. |
OperationStatus
Metadata of operation status.
Bases
dict
{
"overview": "Queued",
"message": "Operation queued",
"time_updated": 1676621361765,
"time_scheduled": 1676621361765,
"progress": {
"unit": "whole operation",
"with_status": {
"queued": 1,
"running": 0,
"finished": 0,
"cancelled": 0,
"errored": 0
}
}
}
Attribute | Type | Description |
---|---|---|
overview | str | Overview status of current operation. |
message | str | Status message of current operation. |
time_updated | int | Last updated UNIX timestamp of current operation status. |
time_scheduled | int | UNIX timestamp of when the operation was first scheduled. |
progress | dict | Operation progress status indicator. |
Updated 19 days ago