Result Types

Workspace

Workspace details for a specific workspace given by a provided secret key.

Click to expand

Applicable Functions

Attributes

Workspace(
    id="ws_1c8aab980f174b0296c7e35e88665b13",
    name="Raighne's Workspace",
    owner="user_6323fea23e292439f31c58cd",
    tier="Developer",
    create_date=1701927649302
)
NameTypeDescription
idstrUnique ID of the current workspace.
namestrName of the current workspace. You can modify this on Nexus directly by clicking on the Settings button on the top right of the Workspace Dashboard.
ownerstrUnique user ID of the workspace owner. This is tied to the email used to sign up for the Nexus account.
tierstrCurrent workspace tier that determines access to advanced features and increased resource quotas. To enjoy these benefits, check out how to Upgrade Your Plan.
create_dateintUNIX timestamp of workspace creation date.

Project

Project results for a specific project given by the project key.

Click to expand

Applicable Functions

Attributes

Project(
    id='proj_9004a21df7b040ace4674c4879603fe8',
    name='keypoints',
    workspace_id='ws_1c8aab980f174b0296c7e35e88665b13',
    type='ObjectDetection',
    create_date=1701927649302,
    localization='MULTI',
    tags=['cat faces'],
    groups=['main', 'cats'],
    statistic=Statistic(
        tags_count=[TagsCountItem(name='cat faces', count=0)],
        total_assets=28,
        annotated_assets=0,
        total_annotations=0
    )
)

Attribute

Type

Description

id

str

Project ID.

name

str

Project name.

workspace_id

str

Workspace ID of the project.

type

str

Project task type, one of tails for a specific workspace given by a provided [s

create_date

int

UNIX timestamp of project creation date.

localization

str

Region(s) for data localization.

tags

list[str]

List of tag names.

groups

list[str]

List of assets groups.

statistic

dict

Contains project statistics for the following categories:

  • tags_count: List of tag counts
  • asset_total: Total number of assets in the project.
  • asset_annotated: Total number of annotated assets in the project.
  • annotation_total: Total number of annotations in the project.

Statistic

Project-level statistics on tags, assets, and annotations.

Click to expand

Applicable Functions

Attributes

Statistic(
    tags_count=[TagsCountItem(name="cat faces", count=0)],
    total_assets=28,
    annotated_assets=0,
    total_annotations=0
)
NameTypeDescription
tags_countlist[TagCountItem]List of TagCountItem objects representing tag counts for each tag in the project.
total_assetsintTotal number of assets in the project.
annotated_assetsintTotal number of annotated assets in the project.
total_annotationsintTotal number of annotations in the project.

User

User metadata.

Applicable Functions

ProjectUser(
    id='user_6323fea23e292439f31c58cd',
    access_type='Owner',
    email='[email protected]',
    nickname='raighne',
    picture='https://s.gravatar.com/avatar/avatars%2Fra.png'
)

Attribute

Type

Description

id

str

User ID.

access_type

str

The access type of the current project, one of workspace given by a provided [secret

.

email

str

User email.

nickname

str

User nickname.

picture

str

User profile picture.


AssetResults

Data results for a specific asset.

Applicable Functions

Asset(
    id='asset_8208740a-2d9c-46e8-abb9-5777371bdcd3',
    filename='boat180.png',
    project='proj_cd067221d5a6e4007ccbb4afb5966535',
    status='None',
    create_date=1701927649302,
    url='',
    metadata=AssetMetadata(
        file_size=186497,
        mime_type='image/png',
        height=243,
        width=400,
        groups=['main'],
        custom_metadata={'captureAt': '2021-03-10T09:00:00Z'}
    ),
    statistic=AssetAnnotationsStatistic(
        tags_count=[],
        total_annotations=0
    )
)

Attribute

Type

Description

id

str

Asset ID.

filename

str

File name of the asset.

project

str

Project ID in which the asset is contained.

status

str

The status of the asset, enum:

notated, Review, Completed, Tofix, None`] | |

create_date

int

UNIX timestamp of when the asset was uploaded.

url

str

URL to the raw asset file.

metadata

dict

Asset metadata

.

statistic

dict

Asset annotation statistics

.


AssetMetadata

Metadata for a specific asset.

Applicable Functions

AssetMetadata(
    file_size=186497,
    mime_type='image/png',
    height=243,
    width=400,
    groups=['main'],
    custom_metadata={'captureAt': '2021-03-10T09:00:00Z'}
)
AttributeTypeDescription
file_sizeintSize of the asset in bytes.
mime_typestrMedia type and format of the asset.
heightintPixel height of the asset.
widthintPixel width of the asset.
groupsList[str]The groups of the asset.
custom_metadatadictThe custom metadata of the asset.

AssetStatistics

Data statistics for a specific asset.

Applicable Functions

AssetAnnotationsStatistic(
    tags_count= [
        TagsCountItem(name="tagName1", count=1)
    ],
    total_annotations= 2
)
AttributeTypeDescription
tags_countlist[dict]List of tag counts.
total_annotationsintTotal number of annotations in the asset.

GroupStatistics

Asset group statistics.

Applicable Functions

[
    AssetGroup(
        group='1', 
        statistic=AssetGroupStatistic(
            total_assets=1, 
            annotated_assets=0, 
            reviewed_assets=0, 
            to_fixed_assets=0, 
            completed_assets=0
        )
    )
]

Attribute

Type

Description

group

str

Name of the asset group.

statistic

dict

Contains asset counts of the following categories:

  • total_assets: Total number of assets in the asset group
  • annotated_assets: Total number of annotated assets in the asset group.
  • reviewed_assets: Total number of reviewed assets in the asset group.
  • to_fixed_assets: Total number of assets in which annotations need to be fixed in the asset group.
  • completed_assets: Total number of assets that have completed the annotation pipeline in the asset group.

TagCountItem

Total count of instances of a tag.

Applicable Functions

  • project.get_info()

Attributes

TagCountItem(
  name="tagName1",
  count=1
)
NameTypeDescription
namestrTag name.
countintTotal count of instances of the tag.

AnnotationMetadata

Metadata for a specific annotation.

Applicable Functions

Annotation(
    id='annot_a9ff9b21-c0e2-49ff-8a69-773aaf00a6f8',
    project_id='proj_cd067221d5a6e4007ccbb4afb5966535',
    asset_id='asset_f4dcb429-0332-4dd6-a1b4-fee794031ba6',
    tag='boat',
    bound_type='Rectangle',
    create_date=1701927649302,
    bound=[
        [0.2772511848341232, 0.34635416666666663],
        [0.2772511848341232, 0.46875],
        [0.54739336492891, 0.46875],
        [0.54739336492891, 0.34635416666666663]
    ]
)

Attribute

Type

Description

id

str

Unique ID of the annotation.

project_id

str

ID of the project containing the annotation.

asset_id

str

ID of the asset containing the annotation.

tag

str

Tag name of the annotation.

bound_type

str

Bound type of the annotation, one of specific workspace give.

bound

list[list[float]]

Bound vertices with the following format:
[[x1, y1], [x2, y2], ... , [xn, yn]]


WorkflowMetadata

Metadata for a training workflow.

Applicable Functions

Workflow(
    id='flow_64e812a7e47592ef374cbbc2',
    project_id='proj_cd067221d5a6e4007ccbb4afb5966535',
    title='Yolov8 Workflow',
    create_date=1701927649302,
    update_date=1701927649302
)
AttributeTypeDescription
idstrID of the workflow.
titlestrName of the workflow.
project_idstrProject ID containing the workflow.
update_dateintLast updated UNIX timestamp of the workflow.

TrainingInsight

Insight metadata for a training run.

Applicable Functions

ProjectInsight(
    flow_title='Test workflow', 
    run_id='run_4a5d406d-464d-470c-bd7d-e92456621ad3', 
    dataset=InsightDataset(
        data_type='Rectangle', 
        num_classes=1, 
        average_annotations=5.19, 
        total_assets=500, 
        settings=DatasetSettings(
            split_ratio=0.3, 
            shuffle=True, 
            seed=0, 
            using_sliding_window=False
        )
    ), 
    model=InsightModel(
        name='fasterrcnn-inceptionv2-1024x1024', 
        batch_size=2, 
        training_steps=5000, 
        max_detection_per_class=100, 
        solver='momentum', 
        learning_rate=0.04, 
        momentum=0.9
    ), 
    checkpoint=RunCheckpoint(
        strategy='STRAT_ALWAYS_SAVE_LATEST', 
        evaluation_interval=250, 
        metric=None
    ), 
    artifact=InsightArtifact(
        id='artifact_65ae274540259e2a07533532', 
        is_training=False, 
        step=5000, 
        metric=ArtifactMetric(
            total_loss=0.32356, 
            classification_loss=0.012036, 
            localization_loss=0.010706, 
            regularization_loss=0.0
        )
    ),
    create_date=1705912133684
)

Attribute

Type

Description

flow_title

str

Name of the workflow.

run_id

str

ID of the training run.

dataset

dict

Contains loss metrics for the following categories:

step

int

Total number of training steps.

create_date

int

UNIX timestamp of the training creation date.

metric

dict

Contains loss metrics for the following categories:

  • total_loss
  • classification_loss
  • localization_loss
  • regularization_loss

statistic

dict

Contains dataset statistics for the following categories:

  • average_annotations: Average number of annotations per asset.

optimizer

str

Name of the optimizer used in the training.

learning_rate

float

Value of the learning rate used in the training.

momentum

float

Value of the momentum used in the training.

epochs

int

Total number of training epochs.

batch_size

int

Value of the batch size used in the training.

model_name

str

Name of the specific model architecture used in the training.

max_detections_per_class

int

Value to cap the maximum number of detections per class for the model.

data_type

str

Annotation data type.

num_classes

int

Total number of unique classes.

split_ratio

float

Train-test split ratio.

shuffle

bool

Whether the dataset was shuffled.

seed

int

Initialization seed for the training.

checkpoint_every_n

int

Epoch interval to generate checkpoints.

metric_target

str

Metric used to determine best checkpoint saved.


TrainingMetadata

Metadata for training runs.

Bases

dict

Applicable Functions

{
    "id": "run_63eb212ff0f856bf95085095",
    "object": "run",
    "project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
    "flow_id": "flow_63bbd3bf8a78eb906f417396",
    "status": {
        "conditions": [
            {
                "condition": "TrainingStarted",
                "last_updated": 1676353954729,
                "status": "finished"
            },
            {
                "condition": "TrainingFinished",
                "last_updated": 1676356061724,
                "status": "finished"
            }
        ],
        "last_updated": 1676356061724
    },
    "execution": {
        "accelerator": {
            "name": "GPU_T4",
            "count": 2
        },
        "checkpoint": {
            "strategy": "STRAT_LOWEST_VALIDATION_LOSS",
            "evaluation_interval": 250,
            "metric": "Loss/total_loss"
        }
    },
    "features": {
        "matrix": true,
        "preview": true
    },
    "create_date": 1676353954729,
    "last_modified_date": 1676356061724,
    "logs": [
        "log_63eb212ff0f856bf95085095"
    ]
}

Attribute

Type

Description

id

str

Training run ID.

object

str

Type of object.

project_id

str

ID of the project containing the training run.

flow_id

str

ID of the workflow used for the training run.

status

dict

Status of completion of the different stages in the training run, contains the following categories:

  • conditions: List of dictionaries that describe the training conditions (TrainingStarted, TrainingFinished), last updated UNIX timestamp of the operation, and the status of completion.
  • last_updated: UNIX timestamp of when the training statuses were last updated.

execution

dict

Contains training configuration parameters for the following categories:

  • accelerator: Dictionary containing the type and number of GPUs used.
  • checkpoint: Dictionary containing the checkpoint strategy, evaluation interval, and metric used to save the best checkpoint.

features

dict

Contains the activation status of certain advanced visualization features such as Evaluation Preview and Confusion Matrix.

create_date

int

UNIX timestamp of the training creation date.

last_modified_date

int

UNIX timestamp of the last modified date of the training.

logs

list[str]

List of training log IDs that can be used to view training logs via datature.Run.log()


LogMetadata

Metadata for training logs.

Bases

dict

Applicable Functions

{
    "id": "log_63eb212ff0f856bf95085095",
    "object": "log",
    "event": [
        {
            "ev": "memoryUsage",
            "pl": {},
            "t": 1675669392000
        }
    ]
}

Attribute

Type

Description

id

str

Log ID.

object

str

Type of object.

event

list[dict]

List of training event logs containing the following categories:

  • ev: Type of event tracked.
  • pl: Detailed description of the logs.
  • t: UNIX timestamp of the event.

ArtifactMetadata

Metadata for artifacts.

Bases

dict

Applicable Functions

{
    "id": "artifact_63bd140e67b42dc9f431ffe2",
    "object": "artifact",
    "is_training": false,
    "step": 3000,
    "flow_title": "Blood Cell Detector",
    "run_id": "run_63bd08d8cdf700575fa4dd01",
    "files": [
        {
            "name": "ckpt-13.data-00000-of-00001",
            "md5": "5a96886e53f98daae379787ee0f22bda"
        }
    ],
    "project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
    "artifact_name": "ckpt-13",
    "create_date": 1673335822851,
    "metric": {
        "total_loss": 0.548,
        "classification_loss": 0.511,
        "localization_loss": 0.006,
        "regularization_loss": 0.03
    },
    "is_deployed": false,
    "exports": ["onnx", "tflite"],
    "model_type": "efficientdet-d1-640x640",
    "exportable_formats": ["tensorflow", "tflite", "onnx", "pytorch"]
}

Attribute

Type

Description

id

str

Artifact ID.

object

str

Type of object.

is_training

bool

Whether the training is still running.

step

int

Total number of training steps.

flow_title

str

Title of the workflow.

run_id

str

ID of the training run of the current artifact.

files

list[dict]

List of artifact checkpoint files containing the following categories:

  • name: Name of the checkpoint file.
  • md5: MD5 hash value of the checkpoint file.

project_id

str

ID of the project containing the current artifact.

artifact_name

str

Checkpoint name of the artifact.

create_date

int

UNIX timestamp of the artifact creation date.

metric

dict

Dictionary containing the following metrics:

  • total_loss
  • classification_loss
  • localization_loss
  • regularization_loss

is_deployed

bool

Whether the current artifact has an active deployment.

exports

list[str]

List of model formats that the artifact has been exported in.

model_type

str

Model architecture name.

exportable_formats

list[str]

List of all exportable model formats for the artifact.


ExportedMetadata

Metadata of exported models.

Bases

dict

Applicable Functions

{
    "id": "model_d15aba68872b045e27ac3db06a401da3",
    "object": "model",
    "status": "Finished",
    "format": "tensorflow",
    "create_date": 1673336054173,
    "download": {
        "method": "GET",
        "expiry": 1673339505871,
        "url": "https://storage.googleapis.com/exports.datature.ioa2d89"
    }
}

Attribute

Type

Description

id

str

ID of the exported model.

object

str

Type of object.

status

str

Status of the model export.

format

str

Exported model format.

create_date

int

UNIX timestamp of the creation date of the exported model.

download

dict

Dictionary containing the download metadata of the exported model:

  • method: Request method
  • expiry: UNIX timestamp of the expiry of the download link.
  • url: Download link of the exported model.

DeploymentMetadata

Metadata for active deployments.

Bases

dict

Applicable Functions

{
    "id": "deploy_30922d5e-b2f6-43dc-b7b4-e29e2c30fb45",
    "object": "deploy",
    "project_id": "proj_cd067221d5a6e4007ccbb4afb5966535",
    "model_id": "model_5cbcf0fb9f692621f9cfc1ea8f1d68c7",
    "scaling": {
        "mode": "fixed",
        "num_instances": 1
    },
    "status": {
        "overview": "AVAILABLE",
        "message": "Created service successfully",
        "status_date": 1673936127872
    },
    "create_date": 1673935589700,
    "last_modified_date": 1673936127872,
    "locked": false,
    "url": "https://inference.datature.io/neural/3092245/predict"
}

Attribute

Type

Description

id

str

ID of the active deployment.

object

str

Type of object.

project_id

str

Project ID containing the active deployment.

model_id

str

ID of the model used for the deployment.

scaling

dict

Dictionary containing the following categories:

  • mode: Instance scaling mode of the deployment.
  • num_instances: Number of instances of the deployment.

status

dict

Dictionary of the deployment status containing the following categories:

  • overview: Overview status of the deployment.
  • message: Status message of the deployment.
  • status_date: UNIX timestamp of the last update of the deployment status.

create_date

int

UNIX timestamp of the creation date of the deployment.

last_modified_date

int

UNIX timestamp of the last modified date of the deployment.

locked

bool

Whether the deployment is locked.

url

str

API URL endpoint for prediction requests.


OperationMetadata

Metadata for background operations.

Bases

dict

Applicable Functions

{
    "id": "op_508fc5d1-e908-486d-9e7b-1dca99b80024",
    "object": "operation",
    "op_link": "users/api|affaf/proje-1dca99b80024",
    "status": {
        "overview": "Queued",
        "message": "Operation queued",
        "time_updated": 1676621361765,
        "time_scheduled": 1676621361765,
        "progress": {
            "unit": "whole operation",
            "with_status": {
                "queued": 1,
                "running": 0,
                "finished": 0,
                "cancelled": 0,
                "errored": 0
            }
        }
    }
}
AttributeTypeDescription
idstrUnique operation ID.
objectstrType of object.
op_linkstrOperation link used to retrieve operation status.
statusdictOperation status metadata.

OperationStatus

Metadata of operation status.

Bases

dict

{
    "overview": "Queued",
    "message": "Operation queued",
    "time_updated": 1676621361765,
    "time_scheduled": 1676621361765,
    "progress": {
        "unit": "whole operation",
        "with_status": {
            "queued": 1,
            "running": 0,
            "finished": 0,
            "cancelled": 0,
            "errored": 0
        }
    }
}
AttributeTypeDescription
overviewstrOverview status of current operation.
messagestrStatus message of current operation.
time_updatedintLast updated UNIX timestamp of current operation status.
time_scheduledintUNIX timestamp of when the operation was first scheduled.
progressdictOperation progress status indicator.